English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42695405      線上人數 : 1529
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7878


    題名: Diophantine approximation and the Markoff chain
    作者: 黎右強;You-Chiang Li
    貢獻者: 數學研究所
    關鍵詞: 馬可夫鏈;Markoff chain;Diophantine approximation
    日期: 2006-06-28
    上傳時間: 2009-09-22 11:07:55 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 對於實數$xi$我們定義$||xi||$為最接近$xi$整數。我的論文主要是探討$V={liminf_{qin mathbb{N}}q|q xi |:xi in mathbb{R} setminusmathbb{Q}}.$ 這個集合。此篇論文裡面有三個重要定理,分別是Dirichlet、Hurwitz和Markoff的定理。由Dirichlet的定理我們可證得 $Vsubset[0,1]$。而由Hurwitz的定理,我們更進一步推得 $Vsubset[0,1/sqrt{5}]$,並且$1/sqrt{5}$ 將不能再更小。Markoff的定理則是一個重要的結果,他清楚的說明了集合$V$在 $(1/3, 1/sqrt{5}]$ 這個區間上分布的情形。 For raal $xi$, we define $||xi||$ be the nearest integer. We are interested in the set $V={liminf_{qin mathbb{N}}q|q xi |:xi in mathbb{R} setminusmathbb{Q}}.$ . Our main theorems are the Dirichlet's theorem, the Hurwitz's theorem and the Markoff's theorem. From Dirichlet’s theorem, we may prove that $Vsubset[0,1]$. And from Hurwitz’s theorem, we may obtain that $Vsubset[0,1/sqrt{5}]$ and $1/sqrt{5}$ cannot be improved. Markoff's theorem is an important result. He explained how $V$ distributes over the interval $(1/3, 1/sqrt{5}]$
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明