中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/92664
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 43447292      在线人数 : 1351
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/92664


    题名: 利用改質石墨烯修飾電極以提高電池在高電壓 下的性能和穩定性;Modification of the current collector with graphene to enhance the performance and stability of batteries at high voltage
    作者: 格維克;GLANIC, Victor Nicolas LE
    贡献者: 能源工程研究所
    关键词: 儲能;鋰離子電池;石墨烯;防腐;奈米材料;energy storage;Li-ion batteries;graphene;anti-corrosion;nanomaterial
    日期: 2023-09-21
    上传时间: 2024-09-19 16:11:38 (UTC+8)
    出版者: 國立中央大學
    摘要: 鋰離子電池如今在能量存儲方面得到了廣泛的投資,無論是用於嵌入式設備
    還是固定應用。這些電池在零售市場上擁有最佳的電氣性能。從製造出來的那一刻起,
    日曆和循環老化都會影響鋰離子電池的性能。老化過程的一個重要部分是電流收集器
    的腐蝕,特別是在正極的鋁基底的情況下尤為明顯。一般來說,鋁由於形成了不透水
    的原生氧化鋁膜而能夠抵抗腐蝕。然而,在某些電化學條件下,腐蝕會影響電流收集
    器的界面。這在高壓鋰離子電池的情況下尤為明顯,這些電池更容易受到腐蝕的影響。
    許多防腐策略已被提出。
    以往關於通過電化學剝離法製備的氟化石墨烯(FG)的研究表明,這種氟化
    電化學剝離石墨烯(F-ECG)似乎是一種有希望的疏水材料,可以解決腐蝕問題,同時
    通過石墨烯的獨特性能提高鋁電池電流收集器的電氣性能。本研究展示了應用基於石
    墨烯的材料於能量存儲設備的調查,重點關注負極鋁電池電流收集器。
    其結果展示了石墨烯基材料應用於儲能裝置的研究,重點關注負極鋁電池集
    流體。通過 EPD 在織構鋁箔上逐層塗覆不同結構的保護膜,然後分析其形貌、厚度、
    元素組成以及 LSV 電化學和半電池表徵。結果表明,雙層 F-ECG 500s 和 F-ECG 700s
    EPD 持續時間的特定條件允許達到 1.63V 的電位極限,這表明與其他無塗層鋁蝕刻樣
    品相比,腐蝕保護得到了改善。單層 F-ECG 的半電池測試表明,該結果表明,所提出
    的 Al 上的 FECG 改性劑有助於提高循環穩定性,這為未來高性能 LIB 鋪平了道路.;Lithium-ion batteries are nowadays widely invested in term of energy storage whether
    for embedded devices or stationary applications. Those batteries have the best electrical
    properties available on the retail market. The unstable cycle stability affects the performance
    of the lithium-ion batteries from the moment they are manufactured. An important process
    that occurs as a part of the ageing is corrosion of the current collectors, especially prominent
    in the case of the aluminum substrate for the positive electrode. Generally, aluminum resists
    corrosion due to the formation of a non-permeable film of native aluminum oxide.
    Nevertheless, at certain electrochemical conditions corrosion affects the interface of the
    current collector. This is especially the case for high-voltage lithium-ion batteries which are
    more affected by the corrosion affect.
    Many strategies of anti-corrosion have been proposed. Previous works on fluorinated
    graphene (FG) obtained by fluorination of the electrochemically exfoliated graphene (F-ECG)
    seems to be a promising hydrophobic material to solve corrosion issue while increasing the
    electrical properties of aluminum batteries current collector thank to graphene unique
    properties.
    This work shows the investigation of graphene-based material applied to energy
    storage devices focusing on the negative aluminum battery current collector. The different iii
    structures of protective film were layer-by-layer coated on the textured Al foil by EPD, then
    we analysis the morphology, thickness, elemental composition and the LSV electrochemical
    as well as the half-cell characterization. Result show that the specific condition of dual layer
    F-ECG 500s and F-ECG 700s EPD duration allows to achieve a potential limit of 1.63V,
    suggesting the improved corrosion protection compared to other non-coated aluminum etched
    sample. The half-cell testing with single layer F-ECG shows that this result shows that the
    proposed FECG modifier on the Al can help to increase the cycling stability, which pay a way
    toward performant LIB in the future.
    显示于类别:[能源工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML20检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明