English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43436601      線上人數 : 1278
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/94864


    題名: 使用MFCC特徵提取技術結合LSTM 模型之股價預測—以特斯拉股價為例;Tesla Stock Price Prediction through MFCC Feature Extraction and LSTM Modeling
    作者: 洪子鈞;Hong, Tzu-Chun
    貢獻者: 企業管理學系
    關鍵詞: 股價預測;梅爾頻率倒譜係數;長短記憶網路;支持向量機;Stock Price Prediction;Mel Frequency Cepstral Coefficients;LSTM;SVM
    日期: 2024-07-11
    上傳時間: 2024-10-09 15:34:37 (UTC+8)
    出版者: 國立中央大學
    摘要: 過去十幾年間,全球經濟快速成長,促進了金融業的繁榮發展。隨著生活水
    平的提高,股票市場不僅是企業籌集資金的主要途徑之一,也成為大眾普遍採用
    的投資方式。然而,由於股票市場具有隨機和非線性的特性,使得股價預測變得
    非常具有挑戰性。
    過往研究中,學者們已經探索了多種數值數據和文本數據的方法來預測股
    價。受此啟發,本研究提出了一種基於梅爾頻率倒譜係數(MFCC)的特徵提取
    方法,將股價歷史數據轉換為波形數據,並提取多維度的特徵向量,以提供一種
    新的股價預測方法,期望在準確性和可靠性方面取得顯著提升。
    本研究透過將MFCC 提取的特徵數據集切割為短期、中期和長期數據,以符
    合股價技術線圖中的周線、季線和月線趨勢,從而有助於模型在不同時間粒度下
    的訓練特徵,輸入LSTM 模型與SVM 模型進行訓練。最終,本研究的結果證明
    使用MFCC 提取多維特徵數據結合LSTM 模型,在股價預測領域具有一定的準確
    率,為未來的研究提供了一種新的特徵提取方法和方向。;In the past decade, the global economy has grown rapidly, promoting the prosperity of
    the financial industry. With the improvement of living standards, the stock market has
    not only become one of the main ways for companies to raise funds but also a common
    investment method for the public. However, due to the random and nonlinear nature of
    the stock market, stock price prediction has become very challenging.
    In previous studies, scholars have explored various methods of numerical data and
    text data to predict stock prices. Inspired by this, this study proposes a feature extraction
    method based on Mel Frequency Cepstral Coefficients (MFCC), converting historical
    stock price data into waveform data and extracting multi-dimensional feature vectors to
    provide a new method of stock price prediction, aiming to achieve significant improvement
    in accuracy and reliability.
    This study cuts the feature data set extracted by MFCC into short-term, medium-term,
    and long-term data to match the weekly, monthly, and quarterly trends in stock price technical
    charts, thereby assisting the model in training features at different time granularities,
    and inputs the LSTM model and SVM model for training. Ultimately, the results of this
    study demonstrate that using MFCC to extract multi-dimensional feature data combined
    with LSTM models has a certain accuracy in the field of stock price prediction, providing
    a new feature extraction method and direction for future research.
    顯示於類別:[企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML52檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明