English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42684216      線上人數 : 1526
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/73672


    題名: 決策樹、羅吉斯迴歸與類神經網路預測員工績效之比較研究
    作者: 陳冠吟;Chen, Guan-Yin
    貢獻者: 人力資源管理研究所
    關鍵詞: 資料探勘;人力資源管理;決策樹;羅吉斯迴歸;類神經網路;data exploration;human resource management;decision tree;logistic regression;neural network
    日期: 2017-06-13
    上傳時間: 2017-10-27 12:09:22 (UTC+8)
    出版者: 國立中央大學
    摘要: 人力資源領域中將資料探勘的分類技術應用於各方面並未相當常見。本研究將運用個案公司所提供人事資料庫之資料作為研究樣本,經由資料的蒐集及彙整過後,將資料進行分割,主要拆分為訓練樣本及驗證樣本兩部分,並以決策樹、羅吉斯迴歸、類神經網路等三種資料探勘技術建構員工績效高低預後模型。
      結果顯示,以決策樹及類神經網路預測員工績效高低情形的模型為最佳,兩種模型準確度都有90%,ROC曲線下面積AUC值分別為0.907和0.914,表示決策樹及類神經網路模型不管在準確度或是AUC值之兩種模型好壞評估標準上都屬於擁有優良預測能力的模型。
    ;Using classification data-mining algorithm in predicting employee performance is rare. This study uses personnel data as research sample. After data cleaning and compiling process, data is divided into training dataset and the verification dataset. Then, this study uses three data mining technologies including decision tree, logistic regression and neural network to build employee performance prediction model by using training dataset.
      The results show that the model of decision tree and neural network are the best in predicting employee performance by using verification dataset. Two accuracy of two model is 90%. Moreover, AUC is 0.907 and 0.914. It indicates that decision tree and neural network model have better prediction ability than logistic regression.
    顯示於類別:[人力資源管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML227檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明